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The continental shelf of the Ross Sea is one of the Antarctic’s most intensively studied regions. We
review the available data on the region’s physical characteristics (currents and ice concentrations) and
their spatial variations, as well as components of the neritic food web, including lower and middle
levels (phytoplankton, zooplankton, krill, fishes), the upper trophic levels (seals, penguins, pelagic
birds, whales) and benthic fauna. A hypothetical food web is presented. Biotic interactions, such as
the role of Euphausia crystallorophias and Pleuragramma antarcticum as grazers of lower levels and food
for higher trophic levels, are suggested as being critical. The neritic food web contrasts dramatically
with others in the Antarctic that appear to be structured around the keystone species Euphausia
superba. Similarly, we suggest that benthic–pelagic coupling is stronger in the Ross Sea than in most
other Antarctic regions. We also highlight many of the unknowns within the food web, and discuss the
impacts of a changing Ross Sea habitat on the ecosystem.
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1. INTRODUCTION
The Ross Sea continental shelf is a unique region of

the Antarctic, both with regard to its physics and its

ecology. Its broad shelf (the most extensive in the

Antarctic), extreme seasonality (the region being in

complete darkness during winter), numerous signi-

ficant polynyas, extensive ice shelf (the largest in the

Antarctic, covering half of the continental shelf ), and

substantial vertical and horizontal exchanges provide

a dynamic environment for the biota. The food web

appears to be substantially different from most other

areas of the Southern Ocean, which are mostly

pelagic overlying a deep benthos. In addition, the

climate of the Ross Sea is changing, albeit not

necessarily in the same manner as that of areas like

the west Antarctic Peninsula (WAP), where tempera-

tures have increased more rapidly than anywhere else

on Earth in the past 50 years (Smith et al. 1999).

Satellite data suggest that ice extent is increasing in

the Ross Sea region by more than 5% per decade (in

comparison, the reduction in the WAP is approxi-

mately 7% per decade; Kwok & Comiso 2002), as is

the length of the ice season (Parkinson 2002).

However, polynyas are increasing in extent as well

(Parkinson 2002). For most of the biota, the impacts

of these changes are poorly known, but should the

trend continue, significantly altered biological

dynamics can be expected.
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2. THE PHYSICAL SETTING
The physical characteristics of the Ross Sea emphasize
its unique nature (table 1). It is the largest continental
shelf region in the Antarctic, but owing to the isostatic
response of the continent to the mass of the ice cap, it
remains relatively deep (mean depth is approx. 500 m).
The shelf break occurs at approximately 800 m, with
the slope reaching 3000 m. The currents on the Ross
Sea continental shelf are characterized by a gyre-like
circulation (figure 1). This circulation also extends
under the ice shelf, although the details of the under-
shelf circulation are poorly known. The water that exits
is substantially cooled and modified, with potential
temperatures less than K28C (the extreme temperature
is possible due to the reduction in the freezing point
with increased pressure). Most currents are coherent
throughout the entire water column, and substantial
seasonal variability in current velocities occurs
(Dinniman et al. 2003). The deep canyons at the
shelf break affect the deep circulation and facilitate
intrusions of modified circumpolar deep water
(MCDW) onto the shelf.

Much of the Ross Sea’s physical oceanography is
dominated by the presence of a large area of reduced
pack ice cover surrounded by denser ice concen-
trations, the Ross Sea polynya. In winter, the polynya
is formed by strong katabatic winds from the south that
advect ice to the north. In turn, cold air temperatures
drive significant ice formation, and the resultant fresh
water removal creates cold, salty and therefore dense
water that sinks, driving convective overturn. Aperiodic
intrusions of MCDW also provide heat that increases
ice ablation at the surface. Few oceanographic studies
This journal is q 2006 The Royal Society



Table 1. The physical features and characteristics of the Ross Sea continental shelf.

variable magnitude

area 187 000 km2

water depth mean approximately 600 m (maximum at 1200 m, but with extensive banks (!200 m); shelf break at
800 m

air temperatures range from K60 to 10.18C
water temperature range from K1.86 to 3.28C
salinity range from 34.0 to 34.92 psu
circulation controlled by bathymetry winds, and coriollis force, that generates the Ross Sea gyre; includes flow

under the ice shelf; exchanges with slope via canyons
sediments shallow areas often ice scoured with many boulders; troughs dominated by diatomaceous oozes with

significant organic content
pack ice concentrations range seasonally and interannually from ice free (except for isolated embayments) to 100% ice cover
polynyas four described, the largest is the most extensive in the Antarctic
glacial inputs owing to low temperatures, little run-off; much in the way of subsurface melt and icebergs generated

from Ross Ice shelf and coastal glaciers
irradiance photoperiod from 0 to 24 h; maximum irradiance in summer approximately 60 mol photons mK2 dK1

nutrients [NO3] ranges from 15 to 30 mM; [Si(OH)4] from 20 to 85 mM; [Fe] from 0.05 to 2 nM
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Figure 1. The general circulation of waters on the Ross Sea continental shelf. Shaded area is the location of the Ross Ice Shelf;
depth contours in metres; dashed lines under the ice shelf represent currents derived from modelling but few direct observations.
After Locarnini (1994), Jacobs & Giulivi (1998) and Dinniman et al. (2003).
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have been conducted during winter in the Ross Sea, but
early spring measurements near the ice shelf have

observed a homogeneous mixed layer throughout the

entire water column, suggesting that at some locations
shelf waters are mixed to the bottom during winter.

Smaller polynyas also occur along the coast of
Victoria Land, with notable examples being the Terra
Phil. Trans. R. Soc. B (2006)
Nova Bay Pennell Bank and the Ross Passage polynyas
(Jacobs & Comiso 1989). The seasonal pattern of ice

cover is well known from satellite imagery (figure 2;

Jacobs & Comiso 1989; Jacobs & Giulivi 1998; Zwally
et al. 2002). The Ross Sea polynya begins to expand

rapidly in November as the heat budget becomes
positive, facilitating melting and the cessation of ice
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Figure 2. The seasonal progression of ice cover in the Ross Sea. Data provided by the National Snow and Ice Center, Boulder,
CO, USA.
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Figure 3. Temperature (8C) of the water in the southern Ross
Sea (M. R. Hiscock et al. 1996–1997, unpublished work).
Waters with a maximum subsurface temperature have their
origin from the Antarctic Circumpolar Current and represent
a significant cross-shelf flux of water, as well as a
micronutrient input to the shelf.
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formation. The polynya extends to the northwest and
east, and by mid-January much of the continental shelf
is free of ice. Large variations among years occur, and
these may result from large-scale processes controlling
air pressure and storms (Jacobs & Comiso 1989;
Ainley et al. 2005). An additional component is the
presence of large icebergs that become grounded and
restrict the advection of pack ice off the shelf (Arrigo
et al. 2002). While icebergs of this size are relatively rare
in the experience of humans, they have occurred
regularly during the Holocene as the Ross Ice Shelf
retreated; their occurrence can result in pack ice
concentrations that are far greater than normally
observed, and thus can have significant impacts on
the food web. Pack ice begins to form in late February
and March, and the continental shelf region quickly
becomes ice covered with new pack ice by mid-March.

Exchanges with the continental slope and open
ocean readily occur. Along the shelf break, upwelling of
MCDW leads to the occurrence of a shelf break front
(Ainley & Jacobs 1981; Jacobs & Comiso 1989). It has
also been found that the Ross Sea is an important site of
deep-water formation in association with formation of
the Ross Sea polynya; that is, extremely cold, dense
waters are formed, cascade off the shelf and expand
throughout the southern Pacific sector. The magnitude
of this water mass generation remains uncertain, but
Locarnini (1994) suggested that the Ross Sea is
responsible for nearly one-third of all deep water
formed in the Southern Ocean. More recent estimates
suggest that the region is responsible for 20% of the
Antarctic deep water formed (Orsi et al. 1999). Ice (and
hence fresh water) is advected off the shelf by winds,
and deep-water intrusions onto the shelf also occur
channelled by the several deep N–S troughs (Jacobs
et al. 2002). These intrusions may be biologically
important as sources of iron that fuel surface phyto-
plankton blooms (M. R. Hiscock et al. 1996–1997,
unpublished work), and can be detected by the
temperature and salinity characteristics of these waters,
which are significantly different from the water masses
on the shelf (figure 3; Jacobs et al. 2002). Unfortu-
nately, we do not have a good understanding of the
frequency or strength of these incursions.
Phil. Trans. R. Soc. B (2006)
3. THE BIOLOGICAL SETTING
The Ross Sea has a diverse biota in both the neritic and
the benthic realms, and includes a substantial contri-
bution to the overall diversity from both the ice and the
shallow water littoral. Much is known of each of the
trophic levels, but despite the long history of study
(dating from the explorations of James Clark Ross in
the mid-1800s), a great deal remains poorly known,
and many biological interactions remain incompletely
characterized.
(a) Lower trophic levels

The functional groups (groups of species that have a
similar, unifying characteristic and ecological role) of



Table 2. Functional groups and the ‘critical’ species within each group in the Ross Sea.

functional group critical species

phytoplankton
diatoms Corethron coriophyllum, Pseudonitschia spp., Fragilariopsis spp., Rhizosolenia

spp., Thalassiosira spp.
haptophytes Phaeocystis antarctica
dinoflagellates —
cryptophytes —

heterotrophic microplankton
dinoflagellates —
choanoflagellates —

heterotrophic mesozooplankton
pteropods Limacina helicina
copepods Calanoides acutus, Metridia gerlachei, Euchaeta antarctica
euphausiids Euphausia crystallorophias, Euphausia superba (near the shelfbreak)

nekton
small fishes Pleuragramma antarcticum, Trematomus bernacchii, Pagothenia borchgrevinki,

myctophids (near the shelfbreak)
large fishes Dissostichus mawsoni

marine mammals and birds
seals Lobodon carcinophagus, Leptonychotes weddelli, Hydrurga leptonyx
penguins Pygoscelis adeliae, Aptenodytes forsteri
petrels Pagodroma nivea, Thalassoica antarctica
whales Orcinus orca, Balaenoptera bonaerensis, Berardius amouxii

benthic fauna/flora
shallow, hard substratum: macroalgae, sponges,

soft corals, amphipods, gastropods, bryozoans,
echinoids, asteroids

Himantothallus, Desmarestia, Phyllophora, Homaxinella balfourensis,
Alcyonium, Paramoera walkeri, Sertellidae, Sterechinus neumayeri,
Odontaster validus

deeper (greater than 100 m), hard substratum:
sponges, corals, polychaetes, barnacles,
bryozoans

Cinachyra, Errina, Bathylasma corolliforme, Serpula narconensis,
Microporellidae, Cabereidae, Tubuliporidae

soft substratum: bivalves, gastropods, polychaetes,
echinoids, asteroids, ophiuroids echinoids,
corals

Laternula elliptica, Adamussium colbecki, Yoldia eightsi, Syllidae, Ctenocidaris,
Acodontaster, Ophionotus, Ophiosparte, Ophiurolepis, Astrotoma
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the lower trophic levels, particularly phytoplankton, are
well known. Functional groups include the diatoms,
haptophytes, dinoflagellates and cryptophytes
(table 2), but perhaps just as importantly, several
functional groups commonly found in other oceans,
such as coccolithophorids, cyanobacteria, chlorophytes
and prochlorophytes, are nearly completely absent in
the Ross Sea. Therefore, while the dated notion of a
simplified, linear food chain supported by diatoms does
not exist sensu stricto, some of the smaller components
of the microbial food web are indeed absent; hence, the
mean size of the ‘average’ primary producer is
substantially larger than that of tropical and subtropical
regions. The larger size potentially increases the net
transfer to the higher trophic levels (e.g. Ryther 1969),
but the type of phytoplankton also influences trophic
transfer in the region.

Diatoms are common in waters overlying the Ross
Sea continental shelf, and can be the dominant
members of the phytoplankton. Pennate species (e.g.
Fragilariopsis spp., Pseudonitzschia spp.) form large
blooms, particularly near ice edges during summer
(Smith & Nelson 1985; Fonda Umani et al. 2002;
Garrison et al. 2003), and contribute substantially to
vertical flux of biogenic material either directly or after
incorporation into faecal pellets (Smith & Dunbar 1998;
Accornero & Gowing 2003). Centric diatoms (e.g.
Corethron criophillum, Rhizosolenia spp., Thalassiosira
Phil. Trans. R. Soc. B (2006)
spp.) are ubiquitous components as well. Autotrophic
dinoflagellates are more poorly described, but have been
detected in significant numbers in spring (Mathot et al.
2000). Cryptophytes can occur in large, isolated blooms
(Arrigo et al. 1999) and seem to require the establish-
ment of strong stratification via glacial run-off.

The haptophytes are another important functional
group, dominated in the Ross Sea by Phaeocystis
antarctica. Phaeocystis is known to be critical with
regard to biogeochemistry, climate feedbacks and food
webs, but its food-web connections in the Ross Sea
remain elusive. It produces large amounts of dimethyl-
sulphide (DMS, a volatile organic that is transported
great distances and can influence cloud formation;
Andreae 1990), has greatly different ratios of particu-
late C : N : P relative to diatoms (Arrigo et al. 1999;
Sweeney et al. 2000), is largely ungrazed (Smith &
Asper 2001), and can export significant quantities
of organic matter to depth via aggregate formation
(Smith & Dunbar 1998; DiTullio et al. 2000), although
the majority of the biogenic material is remineralized
within the water column (Smith & Asper 2000; Asper &
Smith 2003). DMS derivatives, found in ice cores, have
also become important proxies for pre-historical trends
in ocean productivity (Curran et al. 2003). The general
seasonal pattern of P. antarctica abundance appears to
be rapid growth in spring, reaching a maximum in mid-
to late December, and a rapid demise in January
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Figure 4. Temporal pattern of Phaeocystis antarctica abun-
dance (as chlorophyll; CHL) and the vertical flux of
particulate organic carbon to depth in the southern Ross
Sea. P. antarctica biomass based on Tremblay & Smith
(2007); flux data from Collier et al. (2000).
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(figure 4). Its growth in late December is probably
limited by in situ iron concentrations, as P. antarctica (as
well as co-occurring diatoms) appears to become iron
limited during summer (Olson et al. 2000). Further-
more, the iron requirements of P. antarctica are greater
than those of diatoms (Coale et al. 2003), and coupled
with its apparent ability to grow well at low irradiances
(Moisan & Mitchell 1999) and relatively low grazing
pressures provided by its life cycle (formation of large
colonies that cannot be effectively grazed by small
herbivores), may allow it to bloom early in the season.

Owing in part to the large amount of sea ice present,
cryophilic algae in the Ross Sea are an important source
of organic matter for the food web; the dynamics of this
flora are better known in the Ross Sea than anywhere
else in the Southern Ocean (Arrigo 2003). Ice algal
biomass can be very large (up to three orders of
magnitude greater than that of the underlying water;
e.g. Sullivan et al. 1993), and on an annual, integrated
basis ice algae contribute approximately 20% of the
local production. The temporal dynamics of ice algae
are quite different compared to those of phytoplankton,
with the seasonal increase occurring prior to that of
phytoplankton and the release into the water column
(and subsequent flux and/or remineralization) occur-
ring prior to the planktonic export (Arrigo et al.
1998a,b). It has been repeatedly suggested that
ice algae ‘seed’ the water column upon ice melt (e.g.
Smith & Nelson 1985), but little direct evidence exists
concerning the physiological and ecological capabilities
of ice algae once they are released into the water
column. Similarly, the grazer crystal krill (also known
as ice krill; Euphausia crystallorophias) is considered to
be an obligate ice form, but although it is considered to
be the single most important grazer of neritic diatoms
(Pakhomov & Perissinotto 1997), nearly nothing is
known about its quantitative relationship with ice algae
(see below). Despite the presumed importance of ice
biota, little is known concerning the linkages between
ice algae, the water column and the localized food web,
and without that understanding a clear, quantitative
understanding of food web transfers within the food
web will remain elusive.

Bacterial biomass is low in spring, but both biomass
and activity increase with the seasonal phytoplankton
Phil. Trans. R. Soc. B (2006)
bloom (Ducklow et al. 2000). Microbes both in the
water column and the sea ice are involved (e.g. Lizotte
2003; Garrison et al. 2006). However, biomass does
not increase to the same degree as phytoplankton,
suggesting that the initial biomass and activity is limited
by carbon and energy sources, whereas later in
the season losses due to bacterivory become important
(Caron et al. 2000). This is consistent with the
two-order-of-magnitude increase in microzooplankton
biomass (Dennett et al. 2001), with the microzoo-
plankton probably using bacteria as a major food
source, given the paucity of smaller phytoplankton
(with the exception of solitary P. antarctica). Bacterial
cells are also larger than those from warmer waters,
with average cell lengths being approximately 1 mm
(Ducklow et al. 2000).

Although the bacterial production and the micro-
bial food web dependent on this production are
unimportant in surface waters (relative to the amount
of carbon processed via the autotrophic system;
Ducklow 1999), various microzooplankton are
present and active. Heterotrophic dinoflagellates are
seasonally important consumers of autotrophic
carbon, as are nanoplanktonic choanoflagellates
(Dennett et al. 2001). The mean annual particulate
carbon contribution of heterotrophic microplankton
is not grossly different from that of other oceans, but
the seasonal variations are extreme. Caron et al.
(2000) found that microzooplankton grazing rates (as
determined by dilution experiments) are extremely
low, and most do not have significant rates of grazing.
Smith et al. (2003) suggested that this results from
colonial P. antarctica escaping grazing through their
increased size, with small solitary P. antarctica cells
being ingested.

Unlike the pelagic and slope waters of the Southern
Ocean, where Antarctic krill (Euphausia superba) has
been intensively investigated (Siegel 2005; Nicol
2006), surprisingly little is known about mesozoo-
plankton (greater than 200 mm) in the Ross Sea and
their role in food-web dynamics and biogeochemical
cycles. Hopkins (1987) analysed the diet of the
zooplankton, euphausiids and small fishes in
McMurdo Sound, and found that the copepods
Calanoides acutus, Metridia gerlachei and Euchaeta
antarctica were important. The same species were
found to be important in Terra Nova Bay and the
northern shelf region as well (Carli et al. 1999; Zunini
Sertorio et al. 1999). Crystal krill are presumed to be an
important link between the ice and the water column,
owing to their prominence in the diets of species in
upper trophic levels, but there have been only a few
efforts to quantify their biomass, distribution and rates
of grazing in the Ross Sea (e.g. Azzali & Kalinowski
2000). Sala et al. (2002) found that E. crystallorophias
dominated on the continental shelf south of 748 S, but
that E. superba was dominant near the shelf break.
Azzali & Kalinowski (2000) did net tows and acoustic
surveys for krill in the Ross Sea sector, and found large
variations in space and time for both species. Hopkins
(1987) found that the late summer biomass of crystal
krill was only 10% that of total zooplankton in
McMurdo Sound, and was approximately equal to
that of small fishes. However, the grazing on crystal
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krill is intense, leading to their presumed seasonal
depletion by predators (e.g. adélie penguins Pygoscelis
adeliae, Antarctic silverfish Pleuragramma antarcticum
and minke whales Balaenoptera bonaerensis; Ainley et al.
2004, 2006), who then switch their diet to small fishes
during early summer (Ainley et al. 2003a, 2006).
Otherwise, crystal krill are long-lived, living to at least 5
years in age, and their turnover can be quite slow.
Given their importance to neritic food webs, new ideas
and data on their biomass, vertical and horizontal
distribution, and life-history patterns are required,
particularly in regard to their response to seasonal and
interannual variation in sea-ice extent, polynya extent
and timing, and predation.

An unusual feature of the Ross Sea is the relatively
significant temporal uncoupling between surface pro-
duction and the vertical flux of organic matter
(figure 4). In many areas of the ocean and Antarctic,
the export of organic matter to depth (in this case
500 m) is tightly coupled, as passive sinking of
phytoplankton and phytodetritus is relatively rapid (of
the order of 10 m dK1), and so sinking of particles can
deliver particulate organic carbon (POC) to 500 m of
the order of days to a few weeks (Lohrenz et al. 1992;
Fischer et al. 1988; Smith & Dunbar 1998; Smith et al.
in press). In the Ross Sea, the maximum in
phytoplankton biomass and flux are, however, separ-
ated by some 4.5 months (figure 4). The production
peak is due to the seasonal bloom of P. antarctica,
whereas the flux maximum is much broader, occurs in
May (winter), and is mediated by the pteropod
Limacina helicina (Collier et al. 2000). Given that the
yearly production is approximately 100 g C mK2, and
the January–June flux is approximately 3.5 g C mK2,
this suggests that the Ross Sea is neither highly
retentive nor characterized by high rates of export
relative to production (Grebmeier & Barry 2007), but
the timing of flux is unusual and may influence benthic
growth and survival.

(b) Fishes
The fish fauna of the Ross Sea is overwhelmingly
dominated by a single family, the notothenioids, and
La Mesa et al. (2004) characterized this dominance as
being ‘unparalleled in the fish fauna of any other
marine ecosystem’. In the deeper portions of the
Southern Ocean, including the Ross Sea continental
slope, families such as Myctophidae and Liparidae
contribute much more to the fish fauna (Eastman
1993). Most notothenioids as adults are benthic fishes
having no swim bladders, but with reduced skeletal
mineralization and concentrated lipid deposits they
also have radiated to occupy mid-waters, especially for
feeding (Eastman 1993). In the Ross Sea, notothe-
nioids comprise 77% of all species and 91% of the
biomass (Eastman & Hubold 1999). In addition to
their overwhelming taxonomic dominance, notothe-
nioids are extremely important within the food web of
the Ross Sea, a pattern divergent from the Antarctic
krill-dominated remainder of the Southern Ocean. As
with other trophic groups, the fish fauna is also
noteworthy for forms that are absent: there are no
fast moving, piscine top predators such as sharks and
tunas, but this is true for the entire Southern Ocean.
Phil. Trans. R. Soc. B (2006)
One species that occupies a critical role in the food

web is the Antarctic silverfish P. antarcticum, which
occurs high in the water column as 1- and 2-year olds,

but otherwise descends to epibenthic depths later in
life; as subadults, it comprises more than 90% of the

biomass of mid-water fish (DeWitt 1970). It feeds
largely on zooplankton, but is opportunistic and will

ingest other forms, including its own larvae, mysids,
amphipods and pteropods. It, in turn, is fed upon

by flighted birds (South polar skuas Stercorarius
maccormicki, snow petrels Pelagodroma nivea and

Antarctic petrels Thalassoica antarctica), adélie and
emperor (Aptenodytes forsteri ) penguins, Weddell

seals (Leptonychotes weddellii ), Antarctic toothfish

(Dissostichus mawsoni ) and other fishes, minke
(B. bonaerensis) and killer whales (Orcinus orca). In

times and locations where crystal krill are absent, or at
greatly reduced biomass, P. antarcticum may dominate

energy transfer within the water column.
Another notothenioid that is commonly found in

the Ross Sea is D. mawsoni, or Antarctic toothfish. It
is epibenthic, although under fast ice it occurs in mid-

depths (Fuiman et al. 2002), and as with other
notothenioids, neutral buoyancy is achieved by both

lipid inclusion and reduced skeletal calcification
(Eastman 1993). This species is the largest fish in

Antarctic waters (mean length and mass for 29
specimens in McMurdo Sound is 163 cm and 60 kg,

respectively, and 70 kg specimens have been reported;
Eastman 1993), and has recently become the target of

a long-line fishery in the Ross Sea, especially along
the continental slope (Horn 2002; Phillips et al.
2004). Given that toothfish grow and recruit slowly
(approx. 2 cm and 0.9 kg yrK1; Eastman 1993), the

fishery could quickly impact the biomass and

distribution of the group and potentially disrupt the
entire food web (in the sense of Jackson et al. 2001;

Pauly & Maclean 2003; Pauly et al. 2005). The
toothfish may be the ecological counterpart of sharks

in warmer ecosystems; Eastman (1993) characterized
toothfish as the most voracious piscine predator in the

Southern Ocean. In the shallower portions of the
Ross Sea, toothfish feed primarily not only on

P. antarcticum, but also on cephalopods and mysids;
10% of its body mass is derived from body lipids. It,

in turn, is a major food item for Weddell seals and
killer whales (‘type C’; a form of orca which preys

solely on fishes; Pitman & Ensor 2003); indeed, its
vertical and horizontal distribution in McMurdo

Sound may be strongly regulated by the deep-diving
behaviour and foraging by seals and killer whales (e.g.

Testa et al. 1985).
The cryopelagic notothenioidPagothenia borchgrevinki

is also common in the Ross Sea. Their diet is quite

diverse, feeding on pteropods, copepods, amphipods,
and occasionally larval P. antarcticum (La Mesa et al.
2004). They live in the upper 6 m of the water column,
often on the underside of sea ice, and enter the ice as a

refuge against predation (similar to the behaviour of
krill; Brierly et al. 2002). They have substantial

concentrations of blood antifreezes, which facilitate its
cryopelagic lifestyle. Emperor penguins, skuas and

Weddell seals are their main predators.
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(c) Upper trophic levels

Unlike the remainder of the world ocean, the top-
trophic levels of the Ross Sea remain intact, at least for

the present, although the impacts of whaling in waters
adjacent to the Ross Sea may have had an important

impact (Ainley et al. 2006). A great deal is known about
the numbers, distribution, diet and seasonal natural

history patterns of the top predators: cetaceans, seals
and birds, and increasing information is being garnered

on toothfish (see above). Satellite imagery of chlor-
ophyll (CHL) and the abundance of other top-trophic

predators imply that the Ross Sea is one of the most
productive stretches of ocean south of the polar front

(Arrigo et al. 1998b). Owing to the paucity of

information on prey distribution (i.e. of crystal krill
and silverfish), virtually nothing is known on how

variations in prey variability might affect annual or
decadal variation in reproductive success or, ultimately,

population size of these top predators. On the other
hand, growing evidence indicates that feeding by the

top predators during summer can affect the availability
of their fish and krill prey, at least in the hundreds of

square kilometers of ocean that border on concen-
trations of breeding animals (Testa et al. 1985; Ainley

et al. 2004, 2006).
Cetacean, pinniped and avian biomass over the shelf

is approximately 0.182, 0.068 and 0.070 g mK2, which
are levels comparable to the richest top-trophic marine

communities elsewhere (Ainley 1985). The members
of these communities are pagophilic in their distri-

butions, being associated with sea ice or its proximity
(Ainley et al. 2003b). Except along the shelf break

where blue (Balaenoptera musculus) and other large
baleen whales once frequented, overfishing, sealing or

whaling is not currently affecting ecosystem processes

over the shelf, nor has widespread pollution been an
issue as has occurred elsewhere. In the Ross Sea’s

coastal waters, the minke whale population was greatly
impacted by whaling (standing stocks reduced by 40%;

Branch & Butterworth 2001) that occurred throughout
the Southern Ocean from 1960 to 1980, but has since

recovered (Branch & Butterworth 2001), perhaps as a
result of a reserve population that was protected in the

pack ice where whaling ships did not venture.
Currently, the cetacean population over the shelf is

composed entirely of minke whales (about 14 000),
killer whales (about 7500) and far fewer but unknown

numbers of Arnoux’s beaked whales (Berardius
arnouxii; Ainley 1985; Ponganis & Kooyman 1995;

Branch & Butterworth 2001). These whales, like most
of the birds (see below), are probably absent from the

shelf during winter, owing to darkness and the
extensive sea ice present (Van Dam & Kooyman 2004).

Avian populations also have high standing stocks,

but are species poor. Approximately 38 and 26% of the
world population of adélie and emperor penguins

reside during summer in the Ross Sea, or about 4
million penguins including breeding and non-breeding

portions of populations (as extrapolated from Woehler
1993). An additional 6 million petrels, principally

Antarctic and snow petrels, occur over the shelf and
especially over waters at the shelf break front (Ainley

et al. 1984; Ainley 1985).
Phil. Trans. R. Soc. B (2006)
Finally, the pinniped assemblage is composed of five
species, dominated by the crabeater seal (Lobodon
carcinophagus; about 200 000 individuals), but also
includes the Weddell seal (about 32 000–50 000),
leopard seal (Hydrurga leptonyx; 8000), Ross seal
(Omatophoca rossi; 5000) and elephant seal (Mirounga
leonina; less than 100; Stirling 1969; Ainley 1985).
Except for the elephant seal, these species breed and
probably occur in the Ross Sea region, if not the Ross
Sea itself, continuously throughout the year. The
Weddell seal occurs in areas of fast ice, such as
McMurdo Sound, which supports the highest concen-
trations of this species in the world. The remaining
seals are denizens of the pack ice, especially along the
shelf break and the ice margins of the Ross Sea polynya
(Ainley 1985; Ainley et al. 2003b).

All of these top predators prey principally on two
organisms in waters over the shelf: the Antarctic
silverfish and crystal krill (Eastman 1985, 1993;
Ichii & Kato 1991; Ichii et al. 1998; Cherel & Kooyman
1998; Ainley et al. 2003b). The killer whale (type C;
Pitman & Ensor 2003) and the Weddell seal also feed
heavily on the toothfish (Calhaem & Christoffel 1969;
Testa et al. 1985; Pitman & Ensor 2003; Kim et al.
2004). Near the shelf break, Antarctic krill (E. superba)
and myctophid fish replace crystal krill in the diets of top
predators (e.g. Ainley et al. 1984; Ichii et al. 1998). The
squid, Pyschroteuthis glacialis, can also be important to
predators near the shelf break (Ainley et al. 1984).

The Ross Sea polynya is practically devoid of top-
trophic predators during spring, and these organisms
are found later in the season in the diatom-dominated
food webs characteristic of the marginal ice zone that
rings the polynya (Ainley et al. 1984; Karnovsky et al.
2007). This pattern may be related to the grazing
efficiency of zooplankton in regions with varying
concentrations of diatoms and P. antarctica, which is
purported to be largely ungrazed by mesozooplankton.

(d) Benthos

Antarctic benthic communities are considered to be
among the most ecologically stable in the world,
characterized by a marked resistance to change in
composition and high levels of biomass (Brey & Clarke
1993, but see Dayton 1989), biodiversity and ende-
mism (Brey et al. 1994; Arntz et al. 1997; Clarke &
Johnston 2003). Many species show an essentially
circumpolar distribution (Hedgpeth 1971; Richardson &
Hedgpeth 1977; White 1984; Knox 1994), are
eurybathic (Brey et al. 1996), and often have an
extraordinary longevity (Dayton 1990; Arntz et al.
1994). Any explanation of the structure and distribution
of benthic communities in the Ross Sea must include the
differences in the environments (sea-ice cover, iceberg
scouring and bottom geomorphology) occurring among
sites, and the changes in the trophic dynamics and larval
supply, which in turn are linked to local hydrodynamic
features and primary production.

Barry et al. (2003) investigated the links between
climate variability and the cascade of ecosystem
processes related to the benthos in the Ross Sea.
Owing to the large gradients and abrupt changes in
environmental variables (annual radiation, ice concen-
trations and impacts, trophic inputs and hydrological
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features) along the latitudinal gradient from Cape

Adare (628 S) to McMurdo Sound (788 S), these

variations might be expected to generate differences

in the benthos (Berkman et al. 2005; Howard-Williams

et al. 2006). Terra Nova Bay appears to be particularly

rich, suggesting that community distribution is not

always linearly related to latitudinal gradients. Whether

this diversity and richness is due to sampling artefacts

(the Italian research station is located there; hence

sampling is more frequent and on smaller spatial scales)

or true environmental richness (large productivity,

diversity of bottom types, etc.) is uncertain. Variations

in climatic, geographical and hydrological forcing

represent barriers that result in anomalies in commu-

nity and population distributions. Along the coast of

Victoria Land, Terra Nova Bay, its polynya and the

Drygalski glacier represent significant physical dis-

continuities that affect diversity, community structure

and population genetics.
(e) Controls of benthic distribution

On the continental shelf, the role of ice disturbance

(e.g. ice-cover persistence, anchor ice and ice scouring)

is dominant, facilitating the occurrence of communities

dominated by relatively opportunistic species (Gutt

et al. 1996; Gutt 2001). Grounded icebergs not only

affect the benthic communities, but also modify the

regional hydrodynamic regimes, with significant

attendant changes in primary production (Arrigo

et al. 2002). In contrast, undisturbed benthic commu-

nities show a high level of stability, and contain a variety

of large and potentially long-lived species controlled by

food availability. Only below 500 m does the downward

flux of organic material seem to regulate faunal

distribution.

The role of pelagic organic matter in structuring

Antarctic benthic communities, with inputs linked to

local hydrology, is evident in McMurdo Sound, where

there is an order of magnitude difference in benthic

densities and organic input between the eastern and the

western sides (Dayton & Oliver 1977; Barry 1988).

The seasonal changes in quality and quantity of

suspended organic matter and differences in particle

flux (several orders of magnitude greater than in the

offshore pelagic system) can be affected by terrestrial

inputs, katabatic winds, resuspension and coastal

morphology (Bathmann et al. 1991; Fabiano et al.
1997; Povero et al. 2001). Barry et al. (2003) found

suspension feeders to be more abundant in shallow

waters, while detritus feeders increased with depth.

A significant role has been assigned to ‘latitudinal’

variables (like the time and extent of ice cover or the

lighted season) that could determine the community

emergence, the movement of deep-living species

towards the surface and a general faunal impoverish-

ment towards the south (Berkman et al. 2004). The

macroalgal distribution seems to corroborate this

hypothesis. More information on the spatial and

temporal distributions of benthic organisms is required

to understand the high degree of spatial heterogeneity,

the patchiness of the various assemblages and the

variables that determine community composition.
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(f ) Hard-bottom benthic assemblage distribution

and zonation

The hard-bottom habitat represents only a small
fraction of the total Ross Sea benthos. It is largely
present along the shore and usually covered by fast ice,
but can occur in offshore reefs and seamounts where
the bottom currents are intense and sediments are
scoured and redeposited. The upper littoral fringe is
generally azoic due to the severe physical conditions,
but during the summer ephemeral assemblages,
characterized by cyanobacteria and pennate diatoms,
develop inside small pools, mainly fed by fusion waters
from the land. The tidal zone (1.5–2 m wide) hosts a
biological film composed of diatoms and cyanobacteria
(Gambi & Mazzella 1992), which may reach high
biomass (up to 900 mg CHL-a mK2; Dayton et al.
1986). In the most sheltered areas where the abrasive
action of ice can be avoided, the green macroalgae
Prasiola crispa and Urospora penicilliformis are present
(Cormaci et al. 1992a,b, 1996). Within this commu-
nity, the grazing amphipod Paramoera walkeri reaches
high densities (up to 6000 mK2; Gambi et al. 1994).
Below the littoral zone, algal communities thrive
(Zaneveld 1966, 1968), well structured in belts and
quite homogeneous on a large spatial scale. Large
brown algae (Himantothallus grandifolius, Desmarestia
menziesii and Desmarestia anceps), rhodophytes (Iridaea
cordata and Phyllophora antarctica) and encrusting
algae, as well as diverse fauna of herbivores and their
predators, characterize these belts. Particularly, rich
populations of syllid polychaetes, tanaids and gastro-
pods live associated with Phyllophora (Cattaneo-Vietti
et al. 2000b).

The algal communities along Victoria Land differ
significantly in their latitudinal distribution and compo-
sition. For example, Himantothallus and Desmarestia
are absent south of Cape Hallett, and Phyllophora is
found in shallower waters towards the south. In
McMurdo Sound, the abundance of macroalgae is
reduced, and their bathymetric range is narrower than
elsewhere. An apparent north–south phytogeographical
gradient, with algal belts decreasing in importance to the
south, is probably due to decreased irradiance (total
annual photon fluxes, as well as the number of days of
24 h photoperiods) and the longer persistence of the
pack ice (which scours the seabed and reduces total
irradiance by up to two orders of magnitude). The
carnivorous sea star Odontaster validus and omnivorous
sea urchin Sterechinus neumayeri are frequently
observed, varying considerably in population densities
from site to site.

In McMurdo Sound, from 20 to 25 m, anchor ice
is an important disturbance, affecting up to 70% of
the sea floor (Dayton et al. 1969, 1970; Battershill
1989; Dayton 1989), while similar disturbances are
nearly absent from Terra Nova Bay. Thus, the
shallow water benthos in the two areas can be
significantly different. Fast growing sessile species,
like the bush sponge Homaxinella balfourensis (extre-
mely common at McMurdo), the soft coral Alcyonium
antarctica, and hydroids (more common at Cape
Hallett), are frequently observed, suggesting a role for
ice scouring by small icebergs. In deeper waters
(approx. 80 m), frondose algae are absent at Terra
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Nova Bay, and the calcareous coralline alga Clathro-
morphum, on which sea-urchins feed, dominates; at
McMurdo, the latter alga is replaced by Phymatolithon
at a depth of approximately 60 m (Miller & Pearse
1991). From 70 to approximately 130 m, the benthos
is dominated by diversified filter-feeding assemblages,
dominated by sponges (which can attain high
biomass; over 2–3 kg mK2 wet weight), gorgonaceans
and holothuroids.

The three-dimensional sponge–anthozoan assem-
blage (Bullivant 1967) is among the most complex
communities present in the Ross Sea, and its complex-
ity is comparable with temperate or even tropical
communities. It has been described from McMurdo
Sound (Dayton et al. 1974) and Terra Nova Bay
(Cattaneo-Vietti et al. 1996, 2000c), with high diversity
and biomass, as well as high rates of predation,
competition and symbiosis (e.g. the intriguing dia-
tom–sponge relationships; Bavestrello et al. 2000;
Cerrano et al. 2000, 2004a,b). Structural differences
arise mainly from the different role played by huge
volcano sponges, the hexactinellids Rossella racovitzae,
Rossella nuda and Scolymastia joubinii.

Below 120–130 m, hard-bottom outcrops become
rare and is mainly colonized by the polychaete Serpula
narconensis (Schiaparelli et al. 2000) and bryozoans,
which become dominant in still deeper waters
(200–350 m), forming dense mats near Cape Hallett.
Elsewhere, the hard substratum is available only on
seamounts, ridges or along the shelf break where the
bottom currents are intense and sediments are scoured
and redeposited. Some conspicuous sessile species, like
the orange stylasterine coral (Errina sp.) and the
Antarctic acorn barnacle (Bathylasma corolliforme),
cover exposed rock surfaces. The stylasterine corals
seem to be more common in the northern reaches of the
Ross Sea (e.g. Pennell Bank, Cape Hallett, Cape Adare).

(g) Soft bottom benthic assemblage distribution

and zonation

In the Ross Sea, soft sediments are relatively coarse,
characterized by gravel or muddy sand through
400–500 m. In shallow waters (20–70 m), dense
populations of benthic diatoms (up to 30–200 mg mK2

CHL-a) favour surface deposit feeders such as crystal
krill and infauna (characterized by the large bivalve
Laternula elliptica (10–20 mK2) and the smaller Limopsis
sp.). In some areas of Terra Nova Bay and McMurdo
Sound, the bivalve Adamussium colbecki covers nearly
100% of the seabed, reaching 100–120 g mK2 DW (soft
tissues) and 60–80 mK2 (Stockton 1984; Berkman
1990; Cerrano et al. 2001; Chiantore et al. 2000,
2001, 2002, 2003; Heilmayer et al. 2003). This bivalve
processes approximately 14% of the total carbon flux
and produces biodeposits that support active microbial
production (Albertelli et al. 1998; Chiantore et al. 1998).
The distribution of this species, which is generally
considered to be circumantarctic, is not homogeneous
along Victoria Land, becoming rarer at northern sites
(Capes Hallett and Adare). Moreover, Terra Nova Bay
and McMurdo Sound populations may be genetically
distinct, as the dispersal capacity of larvae could be
restricted to the pack ice where food and shelter are
available (M. Guidetti et al. 2001, unpublished work).
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In shallow waters, predators such as gastropods and
the nemertean worms are locally abundant, while the
echinoid S. neumayeri and the starfish O. validus remain
abundant at all depths on both hard and soft substrata
(Chiantore et al. 2002). As with sea urchins, differences
were observed between the McMurdo and Terra
Nova Bay populations, with specimens of the latter
being more abundant but smaller than those from
McMurdo Sound. Among echinoids, the pencil
urchins (Ctenocidaris sp.), a euribathic group, seem to
show a discontinuous distribution as well, being
common in McMurdo Sound, absent in Terra Nova
Bay, and occurring in northern sites.

The amount of fine-grained sediment increases with
depth, as does the organic matter concentration. In these
environments, the bivalve Yoldia eightsi reaches high
densities (70–80 mK2 at Terra Nova Bay); numerous
species of ophiuroids and spatangoids are also found.
Generally, the fine-grained sediments below 120 m is
populated by tube building polychaetes (Gambi &
Bussotti 1999; Gambi et al. 2000) and small bivalves
(Cattaneo-Vietti et al. 2000c). Large deposits of siliceous
sponge spicules can be found free in the sediments or
densely packed in spicule mats greater than 1 m in
thickness (Barthel 1992; Cattaneo-Vietti et al. 2000a).
Within these mats, lives a rich and specialized commu-
nity, dominated by the burrowing bivalve Limatula
hodgsoni, many crustaceans and polychaetes. These
spicules can represent more than 50% of the total dry
weight of the sediment and can reach densities of 500 000
spicules gK1. These mats confirm the locally important
role of sponges, which along with diatoms determine the
texture and silica content of the sediments.

At the shallow depths of banks, iceberg-scouring
effects are important. These perturbations occur
continuously in front of Capes Hallett and Adare,
where the continuous passage of tabular icebergs
creates large troughs and pits, as well as berms of
displaced sediment that may reach 8 m in height. Near
Cape Hallett, the percentage of bottom area disturbed
is approximately 30% (Berkman et al. 2005). The result
is a mosaic of patches characterized by a temporal
succession of ephemeral, fast growing, opportunistic
species (Dayton et al. 1969; Dayton 1989, 1990;
Lenihan & Oliver 1995). Only among the vagile
fauna is the scouring activity less intense than expected:
the iceberg movement probably causes a pressure wave
in the sediments that triggers an escape response in the
epifauna. Near Capes Hallett and Adare (from 150 and
250 m), the benthic communities are characterized by
dense populations of ascidians, which are less common
in the south where the iceberg impacts are less intense.
These ascidian-dominated communities, with associ-
ated bivalves and ophiuroids, could be considered as
intermediate successional stages following an iceberg
disturbance.

From 450 to 500 m, bryozoan mats generally
dominate in soft bottom substrata, forming the deep
shelf mixed assemblage described by Bullivant (1967),
but locally other taxa dominate, such as ophiuroids or
Cephalodiscus spp. (Hemicordata), which maintain high
densities near Coulman Island (Schiaparelli et al.
2004). Upon an increase in the mud fraction, the
community becomes dominated by polychaetes and
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ophiuroids (deep shelf mud-bottom assemblage) and is
more unstructured, with a strong reduction in faunal
density and biomass.
3. FOOD WEB AND BIOTIC INTERACTIONS
The food-web interactions within the Ross Sea are
largely based on studies of diets of organisms (e.g.
Ainley et al. 1984; Hopkins 1987), as well as
distributions of prey and predators, but because the
food web has a limited number of functional groups, a
realistic food web of the Ross Sea can be deduced
(figure 5). One obvious conclusion to be drawn from
this depiction is that both crystal krill and silverfish are
extremely important species in the food web over the
shelf. What cannot be easily depicted are the temporal
variations that are superimposed on these biotic
interactions. Clearly, the strong seasonality in occur-
rence, abundance, distribution and activity of the
various food-web components greatly influences
energy transfer and stability; however, the time-scales
of interactions are poorly described. Obviously, phyto-
plankton respond rapidly on daily, monthly and
seasonal scales (largely as a function of irradiance),
but it is unclear how quickly long-lived organisms such
as crystal krill, toothfish, silverfish, the benthic fauna
and top predators respond to these variations in
production. These responses will in large part
determine the ecosystem response to perturbations at
the smaller scale, but without an understanding of the
time-scales involved it will be difficult to predict the
system responses to anthropogenically forced changes.

In general, the mid-water food web has a reduced
number of species and groups (relative to non-polar
regions), and the fauna are largely opportunistic
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feeders. Owing to the depth, the benthos is relatively

isolated from the surface waters (except in terms of

coupling of food supply) and as far as we know does not

exert a major, structuring role on the mid-water

component. Further information on the vertical/seaso-

nal movements of fishes and crystal krill could modify

this conception. On the other hand, in shallow areas,

detritus originating from concentrations of birds and

mammals (e.g. carcasses, food remains), as well as that

from sea ice, can be important to the benthic

community. In this regard, the Weddell seal could be

a critical species in coastal areas, preying intensively on

toothfish (which in turn prey on smaller fish species),

reducing their standing stocks to near zero where seal

concentrations are high (Testa et al. 1985), and

providing concentrated amounts of detrital material

to the benthos. Food-web connections are strongly

structured by ice dynamics, which further impose a

marked seasonal influence on biotic interactions.

Smetacek & Nicol (2005) suggest that benthic–pe-

lagic coupling in Antarctic waters is unimportant.

While such generalizations may be true for regions

removed from the continental shelf (depths greater

than 1000 m) and driven by the exponential reduction

in organic matter input to depth, it certainly is not true

for the Ross Sea continental shelf. Indeed, coupling

between the surface layer and benthos is quite strong

(i.e. the flux of organic matter in the surface layer to the

sediments and the relative amount of remineralization

within the water column of that organic material), as it

is in other polar systems of similar depth (Grebmeier &

Barry 2007; C. R. Smith et al. 2006). This is also

reflected in the relatively low importance of the

microbial food web within the Ross Sea water column.
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C. R. Smith et al. (2006) suggest, based on the lack of
seasonal variability of labile organic matter in the
sediments in the Antarctic Peninsula region, that
variations in organic matter flux to the benthos from
above are buffered by the pool of available organic
matter in the sediments, and that even large annual
variations in flux may not induce similar variations in
benthic growth and biomass. Therefore, organisms in
the soft benthos may be uncoupled from surface
processes, but the importance of the flux of biogenic
matter from the surface (and the percentage that enters
the benthos) remains quite high.

Currents in the Ross Sea can often be quite energetic
(greater than 12 cm sK1, with tidal currents exceeding
even these velocities; Dinniman et al. 2003), and often
generate significant nepheloid layers in the bottom
50 m of the water column. Such resuspension of
phytodetritus (of presumably high energetic value)
would routinely provide suspension feeders enhanced
concentrations of food, and also potentially transport
organic matter vertically over relatively large distances
(e.g. from the polynya to areas under ice where
production is reduced). Such redistribution is known
from the distribution of biogenic matter in sediments
(Dunbar et al. 1989) and may be important in
regulating the distribution and growth of suspension
feeders in the Ross Sea.
4. CONCLUSIONS
(a) Uniqueness of the Ross Sea

The Ross Sea continental shelf represents one extreme
within a continuum of biomass, processes and temporal
patterns found in the Antarctic. It is a wide continental
shelf (widest in the Antarctic) and is the most spatially
extensive, productive region in the Southern Ocean. Its
phytoplankton blooms are predictable, and the
observed spatial segregation of functional groups is
temporally consistent (albeit with interannual vari-
ations; W. O. Smith et al. 2006). Top- and middle-
trophic levels have not been substantially impacted by
human activity, as is the case elsewhere on the globe
including the remainder of the Southern Ocean
(Jackson et al. 2001; Pauly et al. 2003), and there is
no widespread pollution or overfishing. Unique attri-
butes include the extreme importance of bivalves in
coupling water column productivity to the seafloor,
processing as much as 14% of the total carbon flux
(Albertelli et al. 1998; Chiantore et al. 1998), a rate now
unknown in other portions of the ocean (the entire
Chesapeake Bay was once filtered over the course of a
few days by oysters, but due to disease and overfishing,
the oysters have nearly disappeared and the Bay is now
flushed physically; Pauly & Maclean 2003), and the
apparent depletion of prey in the foraging areas of
dense concentrations of top predators (Ainley et al.
2004, 2006), a pattern not well documented elsewhere.

The apparent dependence of the upper portions of
the food web on crystal krill and silverfish, two species
whose ecology and dynamics are poorly known, is also
unusual in the Antarctic. While copepods can be
present and dominate grazing on phytoplankton in
numerous areas of the Antarctic (Ashjian et al. 2004),
the upper trophic levels in many regions of the
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Southern Ocean (the so-called ‘Antarctic Marine
Ecosystem’; Beddington & May 1982; Bengtson &
Laws 1985) are apparently structured only around the
Antarctic krill, E. superba, which is present in the Ross
Sea only near the shelf break. Differences between the
two euphausiids are known (Knox 1994), but how
these differences lead to differences in food-web
structure is unclear. Similarly, many of the benthic
communities (e.g. the sponge communities) are quite
unusual and have not been observed elsewhere. There-
fore, many of the aspects of the food web are unique to
the Ross Sea, making it an excellent location to study
the ecology and the biotic interactions of cold waters, as
of yet free of direct anthropogenic impacts. Perhaps
biochemical assessment of the various trophic levels
(isotopes and fatty acids) will allow the quantitative
relationships within the food web to be clarified.
(b) Critical research needs

The Ross Sea is changing, and a more complete
understanding of the system’s entire food web is
needed in order to predict the ecological impacts of
such change (and other changes) in the future. Some
aspects of the food web are relatively well known (e.g.
primary productivity, distributions, sea-ice microbial
communities, and diet and numbers of some top-
trophic predators, and the structure of benthic
communities), but at each trophic level, there are
substantial gaps in our understanding, for example
follows:

— What controls the distribution and abundance of
P. antarctica?

— How productive is E. crystallorophias, and what is its
distribution in space and time, especially during
periods when ice covers the Ross Sea?

— What are the quantitative linkages with the ice biota
and the water column?

— What is the impact of large, mobile animals such as
whales on the entire food web?

— How does the benthos respond to short- and long-
term changes in the physical and the biological
forcing of the water column?

These and other questions are essential in order to
address and make informed predictions about the
response of the entire ecosystem to future changes.

We also do not have a clear understanding of the
responses of various trophic groups to perturbations,
or the time-scales of response. Recently, the Ross Sea
has experienced massive iceberg calvings and ground-
ings, which altered circulation and productivity;
however, we do not know if these changes quan-
titatively impacted all trophic levels, or to what extent.
As some of these icebergs have lasted a number of
years, it would be surprising if there were no
ecological effects of these disturbances, yet we know
little of their impacts on long-lived organisms. We do
know they have changed the genetic structure of
penguin populations (Shepherd et al. 2005). Time-
series data from a single location (or multiple sites)
are needed to assess the long-term (decadal)
responses of all trophic groups (and the interactions
among groups) to change.
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(c) The Ross Sea and factors affecting change

Stemming from interest in the behaviour and fate of the
West Antarctic Ice Sheet, the Holocene and older
climate and history of the Ross Sea embayment and the
Ross Ice Shelf have been intensively studied (e.g.
Stuiver et al. 1981; Berkman et al. 1998; Ingólfsson
et al. 1998). In recent years, the climate of the region
has been consistent with predictions of global climate
models: a cooling of East Antarctica and a warming of
West Antarctica (e.g. Kwok & Comiso 2002). Despite
slightly warmer winter temperatures measured at Ross
Island (Ainley et al. 2005), the Ross Sea ice extent has
been increasing and the sea-ice season has been
growing longer, in contrast to much of the ocean off
West Antarctica (Parkinson 2002; Zwally et al. 2002).
This may be related to increased wind strengths and
variations in the Antarctic Oscillation (or Southern
Annular Mode; Hall & Visbeck 2002). Further
evidence for this is growth in the size of the Ross Sea
polynya (Parkinson 2002).

Significant oceanographic changes in some water
mass properties in the Ross Sea have also been
observed. Jacobs et al. (2002) found a significant
freshening of deeper water (the changes were up to
0.1 psu), consistent with increased basal melting of the
West Antarctic Ice Shelves (which has recently been
shown to be much greater than thought; Velicogna &
Wahr 2006). Such changes could alter density-driven
circulation, vertical mixing and biogeochemical pro-
cesses on the shelf, but such alterations have as yet not
been documented.

The effects of changing climate on most elements of
the biota have not been directly studied. The responses
of penguin populations to the changes in sea-ice extent
and polynya size (which are climate related) have been
recently assessed (Wilson et al. 2001; Ainley et al.
2005). During a period of low wind speeds and cold
temperatures in the 1950s to early 1970s, sea-ice
concentrations were enhanced, and adélie penguin
populations were reduced. In the mid-1970s, coinci-
dent with a switch in the state of the Antarctic
Oscillation leading to warmer winter temperatures
and stronger winds, the ice became more divergent
and penguin populations began to grow; growth
levelled off in the late 1980s, as the Antarctic
Oscillation again shifted and winds subsided. Coinci-
dent with the mid-1970s shifts, the benthic biota of
McMurdo Sound also changed noticeably relative to
the prevalence of anchor ice (less ice after mid-1970s;
Dayton 1989), and Weddell seal populations may also
have been affected by a decrease in ice thickness (Ainley
et al. 2005).

Perhaps, no less important than climate change, the
Ross Sea ecosystem has recently become the site of
increased commercial fishing and whaling efforts
(Horn 2002), coincident with the reduction of various
stocks in the remainder of the Southern Ocean (Pauly
et al. 2003). Therefore, climate-driven changes and
those driven by human commerce may be occurring
simultaneously, and an understanding of the import-
ance of each to the structuring of the Ross Sea food web
is essential to predict the complex reactions to such
disturbances. Owing to the effects of large-scale fishing
and whaling in the Southern Ocean, we do not know
Phil. Trans. R. Soc. B (2006)
what the structure and function of Antarctic ecosys-

tems were prior to the top predator removal. While the

Southern Ocean is often considered pristine (e.g.

Smetacek & Nicol 2005), the large ecological changes

that were induced by the removal of fishes and whales

severely altered trophic linkages, and today the Ross

Sea is where these linkages are closer to the ‘natural’

state than anywhere else in the Antarctic.

All ecosystems respond to change, and while the

resilience of many systems to change is well known and

quantified, this is not the case for the Ross Sea (or polar

ecosystems in general). The responses of polar biota

tend to be slower than those in more temperate

regimes, and so the rates of ecosystem response may

not be well coupled to the rates of environmental

change, especially if forced by anthropogenic changes

from outside the system. Understanding the nature of

the ecological changes that will occur in the Ross Sea in

future years will be a major challenge for both

oceanographers and polar ecologists.
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